Bayesian Causal Induction

نویسنده

  • Pedro A. Ortega
چکیده

Discovering causal relationships is a hard task, often hindered by the need for intervention, and often requiring large amounts of data to resolve statistical uncertainty. However, humans quickly arrive at useful causal relationships. One possible reason is that humans extrapolate from past experience to new, unseen situations: that is, they encode beliefs over causal invariances, allowing for sound generalization from the observations they obtain from directly acting in the world. Here we outline a Bayesian model of causal induction where beliefs over competing causal hypotheses are modeled using probability trees. Based on this model, we illustrate why, in the general case, we need interventions plus constraints on our causal hypotheses in order to extract causal information from our experience.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating human priors on causal strength

Bayesian models of human causal induction rely on assumptions about people’s priors that have not been extensively tested. We empirically estimated human priors on the strength of causal relationships using iterated learning, an experimental method where people make inferences from data generated based on their own responses in previous trials. This method produced a prior on causal strength th...

متن کامل

Causal Bayesian NetworkX

Probabilistic graphical models are useful tools for modeling systems governed by probabilistic structure. Bayesian networks are one class of probabilistic graphical model that have proven useful for characterizing both formal systems and for reasoning with those systems. Probabilistic dependencies in Bayesian networks are graphically expressed in terms of directed links from parents to their ch...

متن کامل

A Comparison of Association Rule Discovery and Bayesian Network Causal Inference Algorithms to Discover Relationships in Discrete Data

Association rules discovered through attribute-oriented induction are commonly used in data mining tools to express relationships between variables. However, causal inference algorithms discover more concise relationships between variables, namely, relations of direct cause. These algorithms produce regressive structured equation models for continuous linear data and Bayes networks for discrete...

متن کامل

Structure Learning in Human Causal Induction

We use graphical models to explore the question of how people learn simple causal relationships from data. The two leading psychological theories can both be seen as estimating the parameters of a fixed graph. We argue that a complete account of causal induction should also consider how people learn the underlying causal graph structure, and we propose to model this inductive process as a Bayes...

متن کامل

Bayes and Blickets: Effects of Knowledge on Causal Induction in Children and Adults

People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1111.0708  شماره 

صفحات  -

تاریخ انتشار 2011